
Utilizing Google Maps in Android

Ahmad SYAUQI Ahsan

 Geographic Information System (GIS) has been adopted for many range
of applications including facility management, emergency response,
vehicle monitoring, and much more.

 Currently, mobile technology (both software and hardware) has been
advanced rapidly.
 There are many mobile-based services, including Mapping, has been announced.
 The most powerful hardware released to market (as of October 2011) is 1,5GHz Dual

Core Processor with 1GB RAM.
 According to Canalys, Smartphone market growth 73% year-on-year

in the second quarter of 2011. With Android as the number one platform
with 48% from total 107.7 millions unit shipped worldwide.

 There are more benefit if we could combine those two
technologies Mobile GIS.

2

http://www.canalys.com/

 Build a basic mobile GIS application in Android by
utilizing Google Maps.
 Display the map
 Enable Pan and Zoom
 Set display mode into Satellite view
 Get information from the map

3

 Google has provided an API (Application Programming
interface) for accessing their map services.

 In order to use Maps Library/API in our Android application,
we need an API Key.

 Each API Key is uniquely associated with a specific
certificate, based on an MD5 fingerprint of our machine.

4

1. Generate your MD5 certificate:
 Run the Command Prompt (cmd.exe).
 Go to “bin” directory under your “Java Development Kit” folder.
 Issue the following command:

5

keytool.exe -list -alias androiddebugkey -keystore
"C:\Users\username\.android\debug.keystore" -
storepass android -keypass android

2. Open your browser and navigate to
http://code.google.com/android/maps-api-signup.html

3. Check the “I have read and agree with the terms and
conditions (printable version)”

4. Put your MD5 certificate into the textfield.
5. Click the “Generate API Key” you’ll get your API Key.

6

http://code.google.com/android/maps-api-signup.html

 Create new Android
project:
FileNewAndroid
Project

 Type “myMap” for the
project name.

 For Build target, use
Google APIs platform
2.2.

7

 Google Maps library is not a part of the standard Android library, we must declare
it in the Android Manifest.
Open the AndroidManifest.xml file and add the following as a child of the
<application> element:

 Since we’ll retrieve map data from the internet, we also need an access to the
Internet. In the Android Manifest file, add the following as a child of the
<manifest> element:

8

<uses-library android:name="com.google.android.maps" />

<uses-permission android:name="android.permission.INTERNET" />

 The android-manifest.xml should become like below:

9

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="edu.eepis.myMap"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MyMapActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <uses-library android:name="com.google.android.maps" />
 </application>
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

 Open the res/layout/main.xml.
 Delete the preconfigured <TextView> element.
 Add <com.google.android.maps.MapView> element.

10

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.google.android.maps.MapView
 android:id="@+id/myMapView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey=“put_your_API_Key_here" />
</LinearLayout>

 Open src/edu.eepis.myMap/MyMapActivity.java
 Change the MyMapActivity class to extends MapActivity instead of

Activity
 Add the following inside the MyMapActivity class.

 The MyMapActivity.java should become like below.

11

package edu.eepis.myMap;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class MyMapActivity extends MapActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 protected boolean isRouteDisplayed() {return false;}
}

protected boolean isRouteDisplayed() {return false;}

 Run the application.
 The application should be able to display the map, but we

cannot do anything with the map.
 Next step: enabling pan and zoom function.

12

 To enable Pan and Zoom, fortunately, Google Maps library
has provided built-in these two function.

 So, we only need to add one single line into the layout file:
 Open the res/layout/main.xml
 Add the following line as an attribute of

<com.google.android.maps.MapView> element.

13

android:clickable="true"

 Run the application.
 Now we should be able to pan and zoom the application.

14

 We also could utilize built-in zoom control of the MapView component.
 Follow these steps to enable this control:

1. Open the MyMapActivity.java.

2. Add the following lines inside onCreate method for MyMapActivity class.

15

MapView myMapView = (MapView) findViewById(R.id.myMapView);
myMapView.setBuiltInZoomControls(true);

 Now we have zoom in and zoom out buttons located at bottom-center of
screen.

 These buttons automatically disappear if there are no activity .

16

 The MapView component displays a street view as a default.
 If we need to display the map in satellite view, follow these steps:

1. Open the MyMapActivity.java.

2. Add the following lines inside onCreate method for MyMapActivity class.

17

myMapView.setSatellite(true);

 The application will display the map in satellite view.

18

 In GIS applications, it is common to get information from the
map.

 In this example, we’ll make the application shows the
coordinate of a place that get touched.

19

 In order to put an item that lays over the map, we need to create an
overlay class.

 The following code will create an overlay class along with onTouchEvent
that show the coordinate using Toast.
Put this code inside the MyMapActivity class.

20

class MapOverlay extends Overlay {

 public boolean onTouchEvent(MotionEvent event, MapView mapView) {
 if (event.getAction() == 1) {
 GeoPoint p = mapView.getProjection().fromPixels((int)
 event.getX(), (int) event.getY());
 Toast.makeText(getBaseContext(), p.getLatitudeE6() / 1E6 +
 ", " + p.getLongitudeE6()/ 1E6, Toast.LENGTH_SHORT).show();
 }
 return false;
 }
}

 We have created the overlay class in previous slide.
 Then, we need to use that class and arrange it with overlay of the map

class.
 Insert the following code inside the onCreate method of

MyMapActivity class (after the “myMapView.setSatellite(true);”
line):

21

MapOverlay myOverlay = new MapOverlay();
List<Overlay> myListOverlays = myMapView.getOverlays();
myListOverlays.add(myOverlay);

 The application will displays the coordinate (latitude &
longitude) of location that we have just touched.

22

 In some case, we may want to display an address instead of a
coordinate.

 In order to do that, we’ll use a Geocoder class.
 Geocoder class has a getFromLocation method that

will return an address from the given location.

23

 Modify onTouchEvent() method of MapOverlay class by
replacing the

line with the following code.

24

Toast.makeText(getBaseContext(), p.getLatitudeE6() / 1E6 +
 ", " + p.getLongitudeE6()/ 1E6, Toast.LENGTH_SHORT).show();

Geocoder myGeocoder = new Geocoder(getBaseContext(),
Locale.getDefault());
try {
 String myText = "";
 List<Address> myAddresses =
 myGeocoder.getFromLocation(p.getLatitudeE6() / 1E6,
 p.getLongitudeE6() / 1E6, 1);
 if (myAddresses.size() > 0) {
 for (int i=0; i<myAddresses.get(0).getMaxAddressLineIndex()-1; i++)
 myText += myAddresses.get(0).getAddressLine(i) + "\n";
 }
 Toast.makeText(getBaseContext(), myText, Toast.LENGTH_SHORT).show();
} catch (IOException e){}

 When we touch the screen, an address shows up.

25

26

	Mobile GIS
	Background
	Objectives
	Google Maps API
	Obtain Maps API Key
	Obtain Maps API Key (cont’)
	Create New Project
	Edit the Android Manifest
	Edit the Android Manifest (cont’)
	Edit the layout
	Edit the MyMapActivity.java
	First Run
	Enabling Pan and Zoom
	Second Run
	Using built-in zoom control
	Third Run
	Displaying satellite view
	Fourth Run
	Getting information from the map
	Creating overlay class
	Using and arranging overlays
	Fifth Run
	Displaying address
	Displaying address (cont’)
	Sixth Run
	Q&A

